Inorganic Cumulative Exam March 7, 2019 Neal P. Mankad Consider the following data for first ionization energy (IE_1) as a function of atomic number (Z). - 1. Provide a definition for first ionization energy (IE_1). - 2. Within each row of the periodic table, the general trend is for IE_1 to increase from left to right. For example, F and Ne have larger IE_1 values than Li and Be. Explain this trend. - 3. Within each column of the periodic table, the general trend is for IE_1 to decrease from top to bottom. For example, He and Ne have larger IE_1 values than Ar and Kr. Explain this trend. - 4. There are certain anomalies that break these trends. For example, explain why the Group 13 elements (e.g. B, Al, Ga) have lower IE_1 values than the elements immediately to their left in each row. - 5. Similarly, explain why the Group 15 elements (e.g. N, P, As) have higher *IE*₁ values than the corresponding Group 16 elements (e.g. O, S, Se) in each row. - 6. Atomic radii follow similar periodic trends. How does atomic radius generally vary across each row of the periodic table? And down each column? Explain both trends. - 7. Similarly, atomic radii for each element have clear trends vs. charge. Rank the following ions in order of atomic radius: Mn²⁺, Mn³⁺, Mn⁴⁺. Explain the trend. Consider the following data for ammonia (NH₃) and phosphine (PH₃). | Property | Boiling point | H-E-H bond angle | Inversion barrier | pK _a of EH ₄ ⁺ | |-----------------|----------------------|------------------|-------------------|---| | NH ₃ | -33°C | 107° | 155 kJ/mol | 9.25 | | PH ₃ | -83°C | 93° | 25 kJ/mol | -14 | - 8. Explain why PH₃ has a lower boiling point than NH₃ - 9. Explain why PH₃ has a smaller bond angle than NH₃ - 10. Explain why PH₃ has a lower inversion barrier than NH₃. - 11. Explain why PH_4^+ has a significantly lower pK_a than NH_4^+ , i.e. why NH_3 is a Brønsted base and PH_3 is not. - 12. Use MO analysis to provide S-S bond orders for the following molecules/ions: S_2 , S_2^- , S_2^{2-} . Show your work.