
Inorganic Cumulative Exam March 7, 2019 Neal P. Mankad

Consider the following data for first ionization energy (IE_1) as a function of atomic number (Z).

- 1. Provide a definition for first ionization energy (IE_1).
- 2. Within each row of the periodic table, the general trend is for IE_1 to increase from left to right. For example, F and Ne have larger IE_1 values than Li and Be. Explain this trend.
- 3. Within each column of the periodic table, the general trend is for IE_1 to decrease from top to bottom. For example, He and Ne have larger IE_1 values than Ar and Kr. Explain this trend.
- 4. There are certain anomalies that break these trends. For example, explain why the Group 13 elements (e.g. B, Al, Ga) have lower IE_1 values than the elements immediately to their left in each row.
- 5. Similarly, explain why the Group 15 elements (e.g. N, P, As) have higher *IE*₁ values than the corresponding Group 16 elements (e.g. O, S, Se) in each row.
- 6. Atomic radii follow similar periodic trends. How does atomic radius generally vary across each row of the periodic table? And down each column? Explain both trends.
- 7. Similarly, atomic radii for each element have clear trends vs. charge. Rank the following ions in order of atomic radius: Mn²⁺, Mn³⁺, Mn⁴⁺. Explain the trend.

Consider the following data for ammonia (NH₃) and phosphine (PH₃).

Property	Boiling point	H-E-H bond angle	Inversion barrier	pK _a of EH ₄ ⁺
NH ₃	-33°C	107°	155 kJ/mol	9.25
PH ₃	-83°C	93°	25 kJ/mol	-14

- 8. Explain why PH₃ has a lower boiling point than NH₃
- 9. Explain why PH₃ has a smaller bond angle than NH₃
- 10. Explain why PH₃ has a lower inversion barrier than NH₃.
- 11. Explain why PH_4^+ has a significantly lower pK_a than NH_4^+ , i.e. why NH_3 is a Brønsted base and PH_3 is not.
- 12. Use MO analysis to provide S-S bond orders for the following molecules/ions: S_2 , S_2^- , S_2^{2-} . Show your work.