Inorganic Chemistry Cumulative Exam

Neal Mankad, 3 October 2019

- 1. At standard conditions (1 atm, 273.15 K), most elements are solids in pure form.
 - a. Only the noble gases and five other elements are gaseous at standard conditions. What are those five elements?
 - b. There are only two elements in the periodic table that are liquids at standard conditions. One is mercury (Hg). What is the other?
 - c. Given that elemental Au (Z = 79) is a solid at standard conditions with melting point 1337 K, it might seem surprising that Hg (Z = 80) is a liquid with melting point 234 K. Provide a reasonable explanation for the anomalously low melting point of elemental Hg.
- 2. Irradiation of the octahedral complex Cr(CO)₆ with ultraviolet radiation ejects one CO ligand and produces Cr(CO)₅ as a transient intermediate. This species has been trapped in a cryogenic matrix and studied by vibrational spectroscopy at temperatures between 4.2 K and 10 K.
 - a. Two possible structures for $Cr(CO)_5$ were considered by researchers initially. One has C_{4v} symmetry and the other has D_{3h} symmetry. Draw both structures.
 - b. For each structure, determine the Mulliken symbols of the C≡O stretching combinations.
 - c. In a classic 1971 study, Turner and coworkers¹ found that $Cr(CO)_5$ exhibits *three* peaks in the C=O stretching region of its IR spectrum: 2093 cm⁻¹, 1966 cm⁻¹, and 1936 cm⁻¹. On the basis of this data, predict whether $Cr(CO)_5$ adopts a C_{4v} or D_{3h} structure.
 - d. In 1974, Ozin and coworkers² determined that the 2093-cm⁻¹ peak originally attributed to $Cr(CO)_5$ actually arose from an impurity. Using isotopic labeling studies, they were able to confirm that $Cr(CO)_5$ actually has just *two* peaks in the C=O stretching region of its IR spectrum: 1962 cm⁻¹ and 1933 cm⁻¹. On the basis of this new information, predict whether $Cr(CO)_5$ adopts a C_{4y} or D_{3h} structure.
- 3. As shown below, the valence electrons of water (H₂O) occupy *four* different energy levels with ionization energies of approximately 12.5, 14.7, 18.1, and 32 eV.
 - a. Show that the molecular orbital description of H₂O is consistent with this data.
 - b. Discuss the shortcomings of other descriptions involving the population of <u>two</u> valence energy levels, one for the O-H bonding pairs and one for lone pairs.

4. Several molybdenum complexes are shown below.

¹ M. A. Graham, M. Poliakoff, and J. J. Turner, *J. Chem. Soc. A*, 2939 (1971).

² E. P. Kündig and G. A. Ozin, *J. Am. Chem. Soc.*, 3820 (1974).

- a. Which complexes are expected to be paramagnetic, and which are diamagnetic?
- b. The ethene dithiolate (edt) ligands shown in complexes **31** and **32** is a canonical example of a "redox non-innocent" ligand. Explain what is meant by the term, "redox non-innocent". Discuss the concept with representative cases exhibiting redox innocence compared with non-innocence.

Character table for C_{2v} point group

	Е	$C_2(z)$	$\sigma_{v}(xz)$	$\sigma_{v}(yz)$	linear, rotations	quadratic
A ₁	1	1	1	1	z	x^2, y^2, z^2
A ₂	1	1	-1	-1	R _z	xy
B ₁	1	-1	1	-1	x, R_y	XZ
B ₂	1	-1	-1	1	y, R_x	yz

Character table for C_{4v} point group

	E	2C ₄ (z)	C ₂	2σ _v	$2\sigma_{\rm d}$	linear, rotations	quadratic
$\mathbf{A_1}$	1	1	1	1	1	Z	x^2+y^2, z^2
$\mathbf{A_2}$	1	1	1	-1	-1	R _z	
B ₁	1	-1	1	1	-1		x^2-y^2
B ₂	1	-1	1	-1	1		xy
E	2	0	-2	0	0	$(x, y) (R_x, R_y)$	(xz, yz)

Character table for D_{3h} point group

	E	2C ₃	3C'2	$\sigma_{\mathbf{h}}$	2S ₃	3σ _v	linear, rotations	quadratic
A' ₁	1	1	1	1	1	1		x^2+y^2, z^2
A'2	1	1	-1	1	1	-1	R _z	
E '	2	-1	0	2	-1	0	(x, y)	(x^2-y^2, xy)
A'' ₁	1	1	1	-1	-1	-1		
A''2	1	1	-1	-1	-1	1	Z	
E''	2	-1	0	-2	1	0	(R_x, R_y)	(xz, yz)