Undergraduate Thermodynamics:

1. a. According to the equipartition theorem, internal energy per mole is $\left(\mathrm{U}_{\mathrm{m}}=\right)$?
b. What is a degree of freedom?
c. Can you describe a consequence of the equipartition theorem? (hint: what is the change of internal energy at constant temperature? Or maybe something about heat capacity?) (3 pts)
2. Is work an exact or inexact differential? Also, explain how reversible work and irreversible work are different. Let's use pressure-volume type work, for which $\partial \mathrm{w}=-\mathrm{P}_{\mathrm{ext}} \partial \mathrm{V}$.
3. For a process to be spontaneous, is it true that the change in Gibb's Energy must be negative (i.e. $\Delta \mathrm{G}<0 \mathrm{~J}$)?
4. What are the three laws of thermodynamics?
5. Do you remember what Legendre Transforms are, and how they change the natural variables of a function?
a. The change in internal energy is: $\left.\left.\partial \mathrm{U}=\frac{\partial \mathrm{U}}{\partial \mathrm{S}}\right)_{\mathrm{V}} \partial \mathrm{S}+\frac{\partial \mathrm{U}}{\partial \mathrm{V}}\right)_{\mathrm{S}} \partial \mathrm{V}=\mathrm{T} \partial \mathrm{S}-\mathrm{P} \partial \mathrm{V}$. as a result, what are the natural variables of U ?
b. Enthalpy is defined as $\mathrm{H}=\mathrm{U}+\mathrm{PV}$. What are the natural variables of H ? Please prove your answer by determining the change in enthalpy, i.e. $\partial \mathrm{H}$.
c. Likewise Helmholtz energy is $\mathrm{A}=\mathrm{U}-\mathrm{TS}$. What are the natural variables of A? Please prove your answer.
d. Gibb's energy is $\mathrm{G}=\mathrm{U}-\mathrm{TS}+\mathrm{PV}$. What are the natural variables of G ? Please prove your answer.

Graduate Statistical Thermodynamics:

6. What is "statistical thermodynamics"?
7. a. If $\partial S=\frac{1}{T} \partial U+\frac{P}{T} \partial V$, what are the natural variables of entropy?
b. The canonical ensemble is based on a Legendre Transform on entropy: $S-\frac{U}{T}$. What are the natural variables of this function (and show your work!)?
8. Statistical Mechanics generally uses one of three paradigms for analysis. Please provide a short description of:
a. The microcanonical ensemble.
b. The canonical ensemble.
c. The grand canonical ensemble.
9. The canonical partition function is:

$$
\mathrm{Q}=\sum_{\text {states }} \mathrm{e}^{-\mathrm{U} / \mathrm{k}_{\mathrm{B}} \mathrm{~T}}
$$

we make the substation $\beta=\frac{1}{\mathrm{k}_{\mathrm{B}} \mathrm{T}}$ to yield: $\mathrm{Q}=\sum_{\text {states }} \mathrm{e}^{-\beta \mathrm{U}}$. Can you prove that $\langle\mathrm{U}\rangle=\frac{-\partial \ln (\mathrm{Q})}{\partial \beta}$? Hint: The probability (P) of a state having internal energy U is $P(U)=\frac{1}{Q} e^{-\beta U}$.
10. Let's examine a two-level system such as spins on a lattice like so:

These N number of particles (the little circles) do not interact with each other and can either have no energy (ground state) or ε energy (excited state).
a. Are these particles fermions or bosons, and why?
(2 pts)
b. If the temperature is 0 K , all the particles are in the ground state. What is the entropy of that state?
c. Can you heat the system until all the particles are in the excited state? Hint: given $\left.\frac{1}{\mathrm{~T}}=\frac{\partial \mathrm{S}}{\partial \mathrm{U}}\right)_{\mathrm{V}}$,
the temperature becomes very odd once the excited state population is over $1 / 2$ full.
(4 pts)
d. Calculate the single particle partition function:

$$
\mathrm{q}=\sum_{\text {states }} \mathrm{e}^{-\beta \mathrm{U}}
$$

where U is the internal energy and $\beta=\frac{1}{\mathrm{k}_{\mathrm{B}} \mathrm{T}}$. The only two states are the ground and excited states.
e. For non-interacting systems, the total partition function Q is equal to q^{N}, where N is the number of particles. Can you show that $\langle\mathrm{U}\rangle=\frac{-\partial \ln (\mathrm{Q})}{\partial \beta}=\frac{N \varepsilon \cdot e^{-\beta \varepsilon}}{1+e^{-\beta \varepsilon}}=\frac{N \varepsilon}{1+e^{\beta \varepsilon}}$?

Safety:

2 pts/each
11. What is a Chemical Hygiene Plan?
12. What organization oversees lab safety in the state of Illinois?
13. You find a very old bottle of THF in your lab. What are the hazards, and can you test for those hazards; if so, how often?
14. Which of these acids is more concentrated and thus dangerous: hydrochloric acid or sulfuric acid?
15. On your honor, do you know where the nearest fire extinguisher and safety shower are in your work area(s)? (yes or no only!)

General Equations:

$\ln \left(\frac{\mathrm{a}}{\mathrm{b}}\right)=-\ln \left(\frac{\mathrm{b}}{\mathrm{a}}\right) \quad \ln \left(\mathrm{a}^{\mathrm{b}}\right)=\mathrm{b} \cdot \ln (\mathrm{a}) \quad \frac{\partial \ln (\mathrm{f}(\mathrm{x}))}{\partial \mathrm{x}}=\frac{1}{\mathrm{f}(\mathrm{x})} \frac{\partial \mathrm{f}(\mathrm{x})}{\partial \mathrm{x}}$
$\left.\left.\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{V}}=\mathrm{n} \cdot \mathrm{R} \quad \frac{\partial \mathrm{U}}{\partial \mathrm{T}}\right)_{\mathrm{V}}=\mathrm{C}_{\mathrm{V}} \quad \frac{\partial \mathrm{H}}{\partial \mathrm{T}}\right)_{\mathrm{P}}=\mathrm{C}_{\mathrm{P}}$
$\partial \mathrm{U}=\partial \mathrm{w}+\partial \mathrm{q} \quad \Delta \mathrm{w}=-\int \mathrm{P}_{\mathrm{ext}} \partial \mathrm{V} \quad \Delta \mathrm{w}_{\text {irrev }}=-\mathrm{P}_{\mathrm{ext}} \Delta \mathrm{V} \quad \Delta \mathrm{w}_{\mathrm{rev}}=-\mathrm{nRT} \cdot \ln \left(\frac{\mathrm{V}_{\mathrm{f}}}{\mathrm{V}_{\mathrm{i}}}\right)$
$\left.\left.\partial \mathrm{U}=\frac{\partial \mathrm{U}}{\partial \mathrm{S}}\right)_{\mathrm{V}} \partial \mathrm{S}+\frac{\partial \mathrm{U}}{\partial \mathrm{V}}\right)_{\mathrm{S}} \partial \mathrm{V} \quad \partial \mathrm{U}=\mathrm{T} \partial \mathrm{S}-\mathrm{P} \partial \mathrm{V} \quad \mathrm{S}=\mathrm{k}_{\mathrm{B}} \ln (\mathrm{W})$
Probability (P) of variable $\mathrm{x}: \sum \mathrm{P}(\mathrm{x})=1.0 \quad$ Average value: $\langle\mathrm{f}(\mathrm{x})\rangle=\sum \mathrm{f}(\mathrm{x}) \mathrm{P}(\mathrm{x})$
Differential of a multi-variable function: $\left.\left.\partial \mathrm{f}=\frac{\partial \mathrm{f}}{\partial \mathrm{x}}\right)_{\mathrm{y}} \partial \mathrm{x}+\frac{\partial \mathrm{f}}{\partial \mathrm{y}}\right)_{\mathrm{x}} \partial \mathrm{y}$
Legendre Transform: if $\partial \mathrm{f}=\mathrm{C}_{\mathrm{x}} \partial \mathrm{x}+\mathrm{C}_{\mathrm{y}} \partial \mathrm{y}$, then $\mathrm{g}=\mathrm{f}-\mathrm{C}_{\mathrm{y}} \cdot \mathrm{y}$

