Inorganic Chemistry Cumulative Exam Thursday, January 12, 2017 Neal Mankad

- 1. The bifluoride anion [HF₂] exemplifies the so-called *three-center two-electron* (3c-2e) bond.
 - (a) Give a general definition of "3c-2e bond".
 - (b) Provide a qualitative MO analysis of [HF₂] and explain how it fits within your definition.
- 2. Dunbar and coworkers recently reported¹ the synthesis and characterization of the heptacyanotungstate(IV) anion, i.e. $[W(CN)_7]^T$, which adopts a D_{5h} geometry as shown below. How many C=N stretching bands do you expect to be observable by IR spectroscopy? A D_{5h} character table is provided for your reference.

Character table for D_{5h} point group

	E	2C ₅	2(C ₅) ²	5C'2	$\sigma_{\mathbf{h}}$	2S ₅	2(S ₅) ³	5σ _v	linear, rotations	quadratic
A'1	1	1	1	1	1	1	1	1		x^2+y^2, z^2
A'2	1	1	1	-1	1	1	1	-1	R _z	
E'_1	2	2cos(2π/5)	2cos(4π/5)	0	2	2cos(2π/5)	2cos(4π/5)	0	(x, y)	
E'2	2	2cos(4π/5)	2cos(2π/5)	0	2	2cos(4π/5)	2cos(2π/5)	0		(x^2-y^2, xy)
A'' ₁	1	1	1	1	-1	-1	-1	-1		
A''2	1	1	1	-1	-1	-1	-1	1	z	
E''1	2	2cos(2π/5)	2cos(4π/5)	0	-2	-2cos(2π/5)	-2cos(4π/5)	0	(R_x, R_y)	(xz, yz)
E''2	2	2cos(4π/5)	2cos(2π/5)	0	-2	-2cos(4π/5)	-2cos(2π/5)	0		

¹ Birk, F. J., Pinkowicz, D. & Dunbar, K. R. The Heptacyanotungstate (IV) Anion: A New 5d Transition- Metal Member of the Rare Heptacyanometallate Family of Anions. *Angew. Chem.* (2016). doi:10.1002/ange.201602949

3. Recently, Buchwald and coworkers conducted stoichiometric C-N reductive elimination studies using isolated arylpalladium(II) amido complexes that were identified as resting states during Pd-catalyzed C-N coupling.² As shown below, Hammett studies indicated that Pd(II) intermediates derived from electron-deficient aryl halides undergo reductive elimination more slowly than those derived from electron-rich aryl halides.

- (a) Provide an explanation for this observation that takes into account the factors generally impacting rates of reductive elimination.
- (b) Give your hypothesis for how *ortho*-substitution on the aryl halide would impact the rate of reductive elimination.
- 4. The neutral and cationic states of ferrocene, i.e. $FeCp_2$ and $[FeCp_2]^+$, are used as standards for nonaqueous electrochemistry because they are so stable and well understood. The dicationic state of ferrocene is comparatively elusive. Meyer and coworkers recently reported³ the synthesis and characterization of the decamethylferrocene dication, i.e. $[FeCp^*_2]^{2^+}$ (where $Cp^* = \eta^5 C_5 Me_5$). Give the following information about $[FeCp^*_2]^{2^+}$: (a) oxidation state of Fe, (b) d-electron count of Fe, (c) total valence electron count of Fe, and (d) number of unpaired electrons in $[FeCp^*_2]^{2^+}$. For part (d), give a qualitative d-orbital splitting diagram to show how you arrived at your answer.

² Arrechea, P. L. & Buchwald, S. L. Biaryl Phosphine Based Pd(II) Amido Complexes: The Effect of Ligand Structure on Reductive Elimination. *J. Am. Chem. Soc.* **138**, 12486–12493 (2016).

³ Malischewski, M., Adelhardt, M., Sutter, J., Meyer, K. & Seppelt, K. Isolation and structural and electronic characterization of salts of the decamethylferrocene dication. *Science* **353**, 678–682 (2016).