March 2016 LORIEAU

 Consider the following 2 acids: Log_b x = Log_a x/Log_a b

 $HA \xrightarrow{pK_A} A^- + H^+$ $BH^+ \xrightarrow{pK_B} B + H^+$

- a. Derive the Henderson-Hasselbalch equation for each. (pH as a function of pK and the concentrations of each component.)
- b. Derive the standard free energy (ΔG°) with respect to the pK.
- c. How would the standard free energies (ΔG°) and the pKs be influenced for these two reactions in a low dielectric environment (like oil, or the center of a membrane, e=2) versus a high dielectric environment (like water, e=80)?
 - i. Write ΔpK in terms of changes of standard free energy.
 - ii. How would the different dielectric constants influence the ΔG° of the reactants and products of each type of acid?
 - iii. How would this influence the sign of pK for each case?