Don’t Panic

Undergraduate Thermodynamics

If \(\frac{\partial f}{\partial x} \bigg|_y \frac{\partial f}{\partial y} \bigg|_x \), then \(f \) is a function of \(x \) and \(y \). The conjugate of \(x \) is \(\frac{\partial f}{\partial x} \bigg|_y \) and the conjugate of \(y \) is \(\frac{\partial f}{\partial y} \bigg|_x \).

1. If \(\partial U = T\partial S - P\partial V + \mu \partial n \), then what are the natural variables of \(U \) and the corresponding conjugates of those natural variables?

2. If \(\partial U = T\partial S - P\partial V + \mu \partial n \), and I use it to derive: \(\partial S = \ldots \), then what are the natural variables of \(S \) and the corresponding conjugates of those natural variables?

3. How can I calculate the temperature of a system using \(U \) and \(S \)? Do I need to hold something constant?

4. If I write a new function: \(g = f - \frac{\partial f}{\partial y} \bigg|_x \cdot y \), what is \(g \) a function of (what are the natural variables)? Hint: derive what \(\partial g \) is. Double hint: this is a Legendre Transform.

5. What are the natural variable of the function: \(H = U - (P) \cdot V = U + PV \)? Hint: show me what \(\partial H \) is.

6. I hope you know that entropy is a first order homogeneous function of \(U \) (internal energy), \(V \) (volume), and \(n \) (number of moles). Stated mathematically, this means that \(\lambda S = S(\lambda U, \lambda V, \lambda n) \). Note that \(S \) is 0 J/K at 0K (3\text{rd} Law of thermodynamics) and rises with temperature. Can you show that for the following two equations that describe some arbitrary system:

 a. \(S = [n \cdot V \cdot U]^{1/2} \) satisfies all three criterias above?

 b. \(S = n \cdot \ln \left(\frac{U \cdot V}{n^2} \right) \) does not satisfy all three (there must have been a mistake when deriving it!).

 Hint: you have to calculate \(S(T) \) via \(\frac{\partial U}{\partial S} \) to show that \(S=0 \) J/K when \(T=0 \) K and that \(S(T) \) rises with temperature.

7. The following is a Legendre transform of entropy: \(S = (1/T) \cdot U \)

 It still represents entropy but represents a form of entropy that depends on different natural variables. What are the natural variables of this function?
Graduate Statistical Mechanics

Let’s introduce the concept of statistical mechanics. Here, \(S = k_B \ln(W) \), where \(W \) is the number of states.

8. If possible, a thermodynamic system will evolve over time to a) lower its energy and/or to b) maximize its entropy. One of these statements (a or b) is more true than the other. Which one, and why? If you get it right, you won’t need a 2\(^{nd}\) opinion!

9. I am doing a molecular dynamics simulation in the microcanonical ensemble, where \(U, V, n \) are constant. Each molecular configuration generated has equal probability to represent the system as any other. Why? Hint: think about how a system with a higher entropy is more likely to be observed (or is more representative), vs. a configuration with a lower entropy.

10. If I am performing a statistical analysis on a system where I want to keep the “entropy” function: \(S - (1/T) \cdot U \) constant, then what variables should I hold constant? What are the conjugates of those variables that fluctuate? Hint: this defines the canonical ensemble.

11. We can work with a system of units such that \(k_B = 1 \). Concerning the Helmholtz energy: \(-A/T = S - (1/T) \cdot U = \ln(W) - (1/T) \cdot U\) Please cast this equation: \(\ln(W) - (1/T) \cdot U \) into the form: \(\ln(Q) \). To answer the question, just tell me what \(Q \) is. Hint: \(f(x) = \ln(e^{f(x)}) \), and \(Q \) is the canonical partition function.

12. If \(W \) is the number of microstates of a thermodynamic system, where each microstate has a different internal energy \(U_i \), then can you justify the idea that:
\[
\ln(e^W) \cdot f(U_i) = \sum_{i=1}^{\#\text{states}} f(U_i)
\]

13. Given that the canonical partition function is \(Q = \sum_{i=1}^{\#\text{states}} e^{-U_i/T} \), can you prove that
\[
\langle U \rangle = \frac{-\partial \ln(Q)}{\partial (1/T)}
\]
You should know that the probability \((P_i) \) of observing a system with an internal energy \(U_i \) is: \(P_i = \frac{e^{-U_i/T}}{\sum_{i=1}^{\#\text{states}} e^{-U_i/T}} \).

Hint: how do you determine the average value of anything though probability?