Laser Optics are used to measure the spectra of single molecuels in the Jiang Lab.

The Physical Chemistry Division at UIC is internationally recognized for its research in many areas of spectroscopy and dynamics. Its well-funded research groups specialize in the fields of surface science, protein dynamics, nanoscience, and molecular reaction dynamics, among others. The division is known for strong collaborations in many related areas including material science, biophysics, and laser science.

The Glusac group studies photocatalytic and electrocatalytic processes relevant to energy storage applications. Particular emphasis is placed on the incorporation of metal-free catalysis, where the catalytic motifs are incorporated into conductive carbon-based platforms (graphene quantum dots and nanoribbons). The photochemical processes are studied using ultrafast pump-probe laser spectroscopy, while the electrochemical processes are studied using standard voltammetric and potentiostatic methods.

The Hemley group explores the chemistry and physics of materials in extreme conditions up to multimegabar (>100 GPa) pressures using both experiments and computational theory. Current research is focused on transformations of hydrogen and hydrogen-rich materials at these pressures, work that has led to the discovery of room-temperature superconductivity; discovery of novel high-pressure compounds and pressure-induced chemical reactions; synthesis and characterization of new topological, magnetic, and superhard materials; earth and planetary materials, and implications for planetary interiors; and the molecular limits of life in extreme environments. The tools include diamond anvil cell micro-optical spectroscopies, synchrotron infrared spectroscopy, synchrotron x-ray diffraction and spectroscopies, neutron scattering, laser heating, magnetic susceptibility, electrical conductivity, and cryogenic methods, as well as high-pressure materials by design from first-principle computations.

The Jiang group focuses on applying scanning probe-based nanotechnology in nanostuctures design and properties investigation. They are interested in fundamental science and applications at the nano-scale, including charge transfer, electron localization and generation, photoabsorption and photoemission, which are at the heart of the next generation single-molecule devices.

The Král group focuses on the theoretical description of novel transport phenomena and material structures at the nanoscale, with rich potential applications. They are especially attracted by hybrid environments, present in nanofluidic and biological systems, self-assembled nanoparticle superlattices, etc., where the interplay between different types of materials, phases, dimensionalities, energies and timescales is crucial. The physical, chemical and biological aspects of the studied problems are evaluated in a concerted way.

The Lorieau group's research works at the interface of biophysics, physical chemistry and biochemistry. With biophysical solution NMR, solid-state NMR and protein biochemistry, the Lorieau group studies proteins and biomolecules from multiple perspectives. Research in the Lorieau group focuses on protein structure and dynamics, membrane protein biophysics and new computational and theoretical tools for biophysics.

The Snee group focuses on the study of energy transfer in semiconductor nanocrystals (NCs). They are interested in (1) constructing novel semiconductor nanocrystal material systems to engineer energy transfer processes, (2) developing imaging agents based on their NC constructs and (3) bandgap engineering of multilayered nanocrystalline materials.

The Trenary group studies reactions on surface, which are important to chemical technologies such as heterogeneous catalysis, thin film growth, and semiconductor device fabrication. In one area of their research they use Fourier transform infrared (FTIR) spectroscopy to study molecules on the surfaces of metal single crystals. The high resolution of FTIR allows them to observe subtle changes in band shape and frequency as a function of temperature and coverage, which provides new insights into the way molecules interact with metal surfaces and with each other.

The Zhou group combines theoretical, computational, and experimental approaches to study protein biophysics. Theoretical problems of interest include protein-ligand and protein-protein binding kinetics. Computational studies have addressed allosteric communications in proteins, functional mechanisms of ion channels, and thermodynamic properties of proteins in crowded cell-like environments. Experimentally, binding kinetics of disordered proteins and liquid-liquid phase separation of proteins are of particular current interest.