Your browser is unsupported

We recommend using the latest version of IE11, Edge, Chrome, Firefox or Safari.


Our inorganic division has produced several illustrations for journal covers.

Transition metal-mediated processes are also the focus of Tom Driver's research, which is directed towards the development of new methods that increase the structural complexity of readily available substrates. Tom and his group are currently interested in the discovery of new transition metal-mediated reactions, which transform C-H bonds into C-N bonds using azide starting materials. They believe that studying the mechanisms of these transformations will enable the development of new methodology.

The Mankad group synthesizes new inorganic and organometallic coordination compounds and studies their use for bio-inspired small molecule activation as well as homogeneous catalysis. Potential applications of their research include sustainable chemical synthesis, alternative energy conversion, and environmental protection.

The Nguyen group leverages the versatility of sequence-defined oligomers to build and evolve macromolecular inorganic complexes that function as efficient catalysts and molecular machines for energy conversion and drug delivery.

The Trenary group conducts studies of the chemical and structural properties of solid surfaces. With the aim of achieving a fundamental understanding of surface chemical reactions using a variety of surface sensitive techniques, their research provides insights into a variety of areas including heterogeneous catalysis, thin film growth, hydrogen storage, and semiconductor device fabrication.